Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells

by Sharma, Aruna; Muresanu, Dafin F.; Sahib, Seaab; Tian, Z. Ryan; Castellani, Rudy J.; Nozari, Ala; Lafuente, Jose Vicente; Buzoianu, Anca D.; Bryukhovetskiy, Igor; Manzhulo, Igor; Patnaik, Ranjana; Wiklund, Lars; Sharma, Hari Shanker

Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (alpha-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of alpha-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of alpha-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in alpha-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-alpha). Exogenous administration of alpha-MSH (250 mu g/kg) together with MSCs (1 x 10(6)) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of alpha-MSH (100 mu g), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of alpha-MSH and BDNF and decreased the TNF-alpha in SD with CHI. These observations are the first to show that TiO2 nanowired administration of alpha-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.

Progress in Brain Research
Start Page
1875-7855; 0079-6123