Potentiation of spinal cord conduction and neuroprotection following nanodelivery of DL-3-n-butylphthalide in titanium implanted nanomaterial in a focal spinal cord injury induced functional outcome, blood-spinal cord barrier breakdown and edema formation

by Sahib, Seaab; Niu, Feng; Sharma, Aruna; Feng, Lianyuan; Tian, Z. Ryan; Muresanu, Dafin Fior; Nozari, Ala; Sharma, Hari Shanker

Spinal cord injury (SCI) is a devastating disease inflicting lifetime disability to the victims. Military personnel are quite often victims of SCI for which no suitable therapeutic strategies have been developed so far. The main reason for SCI induced disability is loss of neural connections below and above the lesion site causing motor paralysis and somatosensory disturbances Loss of neuronal connections thwart spinal cord conduction resulting in motor function disability. To enhance spinal cord conduction grafting of peripheral nerves, implant of hydrogels filled with neuroprotective drugs is used but so far, no satisfactory results re achieved. In this regards implants of microelectrode for enhancing tissue connectivity is suggested that is still under experimental state. We have used titanium implant with or without TiO2 nanowires in a focal spinal cord injury and studies spinal cord pathology and motor function. In addition, we also combined with nanowired delivery of a potential neuroprotective drug DL-3-n-butylphthalide (DL-NBP) to the spinal cord in a rat model. Our observations show that a combination of titanium implant with nanowired delivery of DL-NBP induces superior neuroprotection and enhance motor functions after SCI. This treatment also restored blood-spinal cord barrier (BSCB) function and reduces edema formation and cell injury after SCI, not reports earlier.

Journal
International Review of Neurobiology
Volume
146
Year
2019
Start Page
153
ISBN/ISSN
2162-5514; 0074-7742
PMID
31349926
DOI
10.1016/bs.irn.2019.06.009