Single-molecule photocatalytic dynamics at individual defects in two-dimensional layered materials
by Dong, Bin; Yang, Meek; Bartey, James
The insightful comprehension of in situ catalytic dynamics at individual structural defects of two-dimensional (2D) layered material, which is crucial for the design of high-performance catalysts via defect engineering, is still missing. Here, we resolved single-mol. trajectories resulted from photocatalytic activities at individual structural features (i.e., basal plane, edge, wrinkle, and vacancy) in 2D layered indium selenide (InSe) in situ to quant. reveal heterogeneous photocatalytic dynamics and surface diffusion behaviors. The highest catalytic activity was found at vacancy in a four-layer InSe, up to ~30x higher than that on the basal plane. Moreover, lower adsorption strength of reactant and slower dissociation/diffusion rates of product were found at more photocatalytic active defects. These distinct dynamic properties are determined by lattice structures/electronic energy levels of defects and layer thickness of supported InSe. Our findings shed light on the fundamental understanding of photocatalysis at defects and guide the rational defect engineering.