Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide

by Usery, R. D.; Enoki, T. A.; Wickramasinghe, S. P.; Nguyen, V. P.; Ackerman, D. G.; Greathouse, D. V.; Koeppe, R. E.; Barrera, F. N.; Feigenson, G. W.

A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.

Journal
Biophysical Journal
Volume
114
Issue
9
Year
2018
Start Page
2152-2164
URL
https://dx.doi.org/10.1016/j.bpj.2018.03.026
ISBN/ISSN
1542-0086; 0006-3495
DOI
10.1016/j.bpj.2018.03.026