Bioprocessing of Stichococcus bacillaris strain siva2011
by Sivakumar, Ganapathy; Jeong, Kwangkook; Lay, Jackson O., Jr.
Background: Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule hydrocarbons. These hydrocarbons can often be used as liquid fuels, often with more versatility and by a more direct approach than some TAGs. However, the appropriate TAGs, accumulated from microalgae biomass, can be used as substrates for different kinds of renewable liquid fuels such as biodiesel and jet fuel. Results: This article describes the isolation and identification of a lipid-rich, hydrocarbon-producing alga, Stichococcus bacillaris strain siva2011, together with its bioprocessing, hydrocarbon and fatty acid methyl ester (FAME) profiles. The S. bacillaris strain siva2011 was scaled-up in an 8 L bioreactor with 0.2% CO2. The C16:0, C16:3, C18:1, C18:2 and C18: 3 were 112.2, 9.4, 51.3, 74.1 and 69.2 mg/g dry weight (DW), respectively. This new strain produced a significant amount of biomass of 3.79 g/L DW on day 6 in the 8 L bioreactor and also produced three hydrocarbons. Conclusions: A new oil-rich microalga S. bacillaris strain siva2011 was discovered and its biomass has been scaled-up in a newly designed balloon-type bioreactor. The TAGs and hydrocarbons produced by this organism could be used as substrates for jet fuel or biodiesel.
- Journal
- Biotechnology for Biofuels
- Volume
- 7
- Year
- 2014
- URL
- https://dx.doi.org/10.1186/1754-6834-7-62
- ISBN/ISSN
- 1754-6834
- DOI
- 10.1186/1754-6834-7-62