Sequential nucleation and growth of complex nanostructured films

by Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B.

Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous-phase routes have been used to produce films composed of more complex crystal structures. In. this paper; we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded-growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and IF ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications.

Journal
Advanced Functional Materials
Volume
16
Issue
3
Year
2006
Start Page
335-344
URL
https://dx.doi.org/10.1002/adfm.200500468
ISBN/ISSN
1616-3028; 1616-301X
DOI
10.1002/adfm.200500468