Topical application of CNTF, GDNF and BDNF in combination attenuates blood-spinal cord barrier permeability, edema formation, hemeoxygenase-2 upregulation, and cord pathology

by Sharma, A.; Feng, L. Y.; Muresanu, D. F.; Huang, H. Y.; Menon, P. K.; Sahib, S.; Tian, Z. R.; Lafuente, J. V.; Buzoianu, A. D.; Castellani, R. J.; Nozari, A.; Wiklund, L.; Sharma, H. S.

Spinal cord injury (SCI) is one of the leading causes of disability in Military personnel for which no suitable therapeutic strategies are available till today. Thus, exploration of novel therapeutic measures is highly needed to enhance the quality of life of SCI victims. Previously, topical application of BDNF and GDNF in combination over the injured spinal cord after 90min induced marked neuroprotection. In present investigation, we added CNTF in combination with BDNF and/or GDNF treatment to examine weather the triple combination applied over the traumatic cord after 90 or 120min could thwart cord pathology. Since neurotrophins attenuate nitric oxide (NO) production in SCI, the role of carbon monoxide (CO) production that is similar to NO in inducing cell injury was explored using immunohistochemistry of the constitutive isoform of enzyme hemeoxygenase-2 (HO-2). SCI inflicted over the right dorsal horn of the T10-11 segments by making an incision of 2mm deep and 5mm long upregulated the HO-2 immunostaining in the T9 and T12 segments after 5h injury. These perifocal segments are associated with breakdown of the blood-spinal cord barrier (BSCB), edema development and cell injuries. Topical application of CNTF with BDNF and GDNF in combination (10ng each) after 90 and 120min over the injured spinal cord significantly attenuated the BSCB breakdown, edema formation, cell injury and overexpression of HO-2. These observations are the first to show that CNTF with BDNF and GDNF induced superior neuroprotection in SCI probably by downregulation of CO production, not reported earlier.