Biomimetic Glycoside Hydrolysis by a Microgel Templated with a Competitive Glycosidase Inhibitor

by Sharma, Babloo; Pickens, Jessica B.; Striegler, Susanne; Barnett, James D.

The impressive catalytic turnover and selectivity of biological catalysts instigated a tremendous effort to understand the source of this catalytic proficiency. In this regard, the synthesis and evaluation of biomimetic catalysts is a very valuable approach to gain insights into the enzymatic mechanisms of action. In addition, anticipated key interactions of the enzymatic turnover can be implemented into enzyme mimics to probe their contributions to the overall catalytic efficiency separately. In this context, we synthesized biomimetic microgels in the presence of an experimentally identified competitive glycosidase inhibitor and evaluated the resulting macromolecular catalysts for proficiency during glycoside hydrolyses. The stepwise-built microgels utilize a synergy of interactions including metal complex catalysis in a hydrophobic microgel matrix, cross-linking, and shape recognition for a glyconoamidine model of the transition state of the enzymatically catalyzed glycoside hydrolyses. The resulting microgels show biomimetic behavior including catalytic proficiency up to 3.3 x 10(6) in alkaline and 1 x 10(7) in neutral aqueous solution: independence of catalytic sites, competitive inhibition, and an inhibition constant K, of 100 mu M in 5 mM HEPES buffer (pH 7.00). Our results place the synthesized microgels among the most proficient biomimetic catalysts known and emphasize the synergy of interactions for an advanced catalytic turnover.

Journal
ACS Catalysis
Volume
8
Issue
9
Year
2018
Start Page
8788-8795
URL
https://dx.doi.org/10.1021/acscatal.8b02440
ISBN/ISSN
2155-5435
DOI
10.1021/acscatal.8b02440